Statistical properties of seismic anisotropy predicted by upper mantle geodynamic models

نویسندگان

  • Thorsten W. Becker
  • Sebastien Chevrot
  • Vera Schulte-Pelkum
  • Donna K. Blackman
چکیده

[1] We study how numerically predicted seismic anisotropy in the upper mantle is affected by several common assumptions about the rheology of the convecting mantle and deformation-induced lattice preferred orientations (LPO) of minerals. We also use these global circulation and texturing models to investigate what bias may be introduced by assumptions about the symmetry of the elastic tensor for anisotropic mineral assemblages. Maps of elasticity tensor statistics are computed to evaluate symmetry simplifications commonly employed in seismological and geodynamic models. We show that most of the anisotropy predicted by our convection-LPO models is captured by estimates based on a best fitting hexagonal symmetry tensor derived from the full elastic tensors for the computed olivine:enstatite LPOs. However, the commonly employed elliptical approximation does not hold in general. The orientations of the best fitting hexagonal symmetry axes are generally very close to those predicted for finite strain axes. Correlations between hexagonal anisotropy parameters for P and S waves show simple, bilinear relationships. Such relationships can reduce the number of free parameters for seismic inversions if this information is included a priori. The match between our model predictions and observed patterns of anisotropy supports earlier, more idealized studies that assumed laboratory-derived mineral physics theories and seismic measurements of anisotropy could be applied to study mantle dynamics. The match is evident both in agreement between predicted LPO at selected model sites and that measured in natural samples, and in the global pattern of fast seismic wave propagation directions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mantle dynamics and seismic anisotropy

a r t i c l e i n f o Keywords: seismic anisotropy mantle flow geodynamic modeling shear wave splitting surface wave analysis mantle convection Observations of seismic anisotropy yield some of the most direct constraints available on both past and present-day deformation in the Earth's mantle. Insight into the character of mantle flow can also be gained from the geodynamical modeling of mantle ...

متن کامل

New evidence for dislocation creep from 3-D geodynamic modeling of the Pacific upper mantle structure

Laboratory studies on deformation of olivine in response to applied stress suggest two distinct deformation mechanisms in the earth’s upper mantle: diffusion creep through diffusion of atoms along grain boundaries and dislocation creep by slipping along crystallographic glide planes. Each mechanism has very different and important consequences on the dynamical evolution of the mantle and the de...

متن کامل

On the relationship between azimuthal anisotropy from shear wave splitting and surface wave tomography

[1] Seismic anisotropy provides essential constraints on mantle dynamics and continental evolution. One particular question concerns the depth distribution and coherence of azimuthal anisotropy, which is key for understanding force transmission between the lithosphere and asthenosphere. Here, we reevaluate the degree of coherence between the predicted shear wave splitting derived from tomograph...

متن کامل

Radial anisotropy in the European mantle: Tomographic studies explored in terms of mantle flow

[1] Previous studies have shown that radial seismic anisotropy as estimated from flow models is in good agreement with results from tomography at global scale, in particular underlying oceanic basins. However, the fit is typically poor at smaller scale lengths, particularly in tectonically complex regions. We conduct a comparative analysis of tomographically mapped and dynamically modeled radia...

متن کامل

Seismic Anisotropy of the Upper Mantle: 1. Factors That Affect Mineral Texture and Effective Elastic Properties

Flow induced mineral alignment in the Earth s mantle affects the nature of seismic wave propagation. Since measurements of seismic travel-time and shear wave splitting are a key means by which the structure of the upper mantle can be imaged, it is important to understand the factors that contribute to variability in elastic properties. Seismic anisotropy associated with lattice preferred orient...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006